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FOREWORD 

This report  is the master's thes i s  of Mr. Wilmoth. His 

This r e sea rch  principal adviser  in this  effort w a s  Dr .  Hagena. 

was c a r r i e d  out under NASA Grant NGR 47-005-046 as a par t  of an 

investigation into molecular collision phenomena, 

beam techniques under the direction of S. S. F i she r ,  0. F. Hagena, 

A. R .  Kuhlthau, J. E. Scott, J r .  and R.  N. Zapata. 

using molecular 



ABSTRACT 

An aerodynamic molecular  beam has been used together 

with a sensit ive time-of-flight detection sys t em t o  m e a s u r e  the 

distribution of flux and speeds of thermal -  energy par t ic les  

sca t te red  f r o m  polycrystalline nickel surfaces .  

t empera ture ,  the distribution of reflected flux var ies  much as 

the cosine of the angle of reflection. 

distributions were  observed af te r  prolonged h'eating of the 

surface in  a vacuum. 

the following for the speeds of the sca t te red  particles:  

At room 

Highly lobular flux 

Time- of-flight measurements  jzdicate 

1. Thermal  accommodation shows a strong dependence 

on the angle nf reflection. 

2. The the rma l  spread is in general  smal le r  than that 

of an effusive Maxwellian distribution at the surface t empera tu re  

and is always l a r g e r  than the spread  in the incident velocities. 

An analysis of a method of fitting analytic expressions 

to  the measu red  t ime-  of-flight curves  indicates that such a 

method provides a reasonably accura te  means  of obtzining the 

average  speed and energy of the reflected par t ic les .  

V 
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SECTION I 

INTRODUCTION 

Gas-surface interactions have been the subject of an 

extensive amount of experimental and theoretical  study. The 

resu l t s  find practical  application in such a r e a s  a s  adsorption 

processes ,  catalysis,  and aerodynamic drag and heat t r ans fe r  

in raref ied gas flows. The problem is concerned with the 

fundamentals of the energy and momentum exchange during 

intermolecular collisions. Difficulties a r i s e  in both the 

theoretical  and experimental studies in that one is forced to  

consider the microscopic details of a many-body, s ta t is t ical  

problem. 

observed experimental phenomena; however, no single model 

i s  able to  predict a l l  of the experimental  resul ts .  

sufficient understanding of the inleraction mechanism exists , 

the details  of the scattering process  must  continue t o  be 

studied experimentally. 

Several  models have been suggested to  explain the 

Until a 

Molecular beams produced f rom effusive sources  have 

provided a useful research  tool in the study of gas- surface 

interactions, and summaries  of some of the experimental  work 

may be found in references (1) and (2). 

oven) beams a r e  somewhat l imited in incident beam flux, and 

this limitation resu l t s  in difficulties in  detection due to  the 

However, effusive (or 

1 
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attenuation of the f l u x  in the scattering process .  

the nozzle-type molecular beam has  overcome the problem of low 

incident flux, and in addition, a highly collimated, m o r e  near ly  

monoenergetic beam is produced(3). This  is desirable ,  because 

the details of the scattering process  tend t o  be obscured fo r  a 

la rge  spread in incident velocities. 

a nozzle-type beam scat tered f rom engineering surfaces ,  has  

Development of 

An initial study, using such 

been reported by Kuhlthau and Bishara  (2 1) . 

Most  of the experiments mentioned in references (1) and 

(2) have reported measurements  of only the angular distribution 

of scattered particles.  It has  been generally assumed that the 

velocity distribution of the scat tered par t ic les  would be near ly  

that corresponding to effusion f rom the surface of par t ic les  with 

a Maxwellian velocity distribution character ized by a mean  energy 

whose value lies between that of the incident par t ic les  and that 

corresponding t o  the actual surface temperature .  

measuring the actual distribution of reflected par t ic le  velocities, 

measurements  of m o r e  readily attainable macroscopic  propert ies  

have been relied upon. The so-called energy and momentum 

"accommodation coefficients" have been defined, providing g r o s s  

representations of the nature of gas-  sur face  interaction. 

Instead of 

A natural  extension of present  knowledge of the problem 

would therefore be to  measu re  the actual distribution of velocities. 
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Recent. efforts at the University of Virginia have been concerned 

with such measurements .  

beam together with a sensitive t ime- of- flight detection system 

developed by Hagena, et has  been used t o  determine the 

velocity distribution of the particles a f te r  scattering f rom sol.id 

A. high- intensity nozzle-type molecular 

surfaces;  preliminary results have been presented by Hagena (5) . 

The time-of-flight method consists of measuring the t imes  

required for  particles to t ravel  a known distance. 

method, the relative distribution of particle flight t imes  may a l so  

be observed; the resulting t ime- of-flight distribution is straight- 

forwardly related to  the particle speed distribution. 

measurements  have been made using argon and nitrogen a s  beam 

gases  incident on polycrystalline nickel targets .  

t a rge t  temperature ,  temperature  history,  and angle of incidence 

have been studied. 

With the present, 

Such 

The effects of 

Results a r e  presented in t e r m s  of both the angular and 

t ime-  of-flight distributions of reflected particles along with 

cer ta in  parameters  which character ize  the t ime-  of-flight 

distributions. An analysis i s  made  of a method of fitting 

analytical. expressions to  the measured  t ime- of-flight dis t r i -  

butions, and a comparison of the  resulting moments i s  made with 

those obtained by numerical. integration. The overa.l.1 resul ts  a r e  

then discussed in relation to cer ta in  simple theories .  



SECTION I1 

EXPERIMENTAL APPARATUS 

2. 1 INTRODUCTION 

The vacuum sys tem and nozzle-beam source  used fo r  the 

present  scattering experiments were  developed by Hagena, et  a l . ,  (4) 

and a complete description of the sys tem along with beam charac te r -  

i s t ics  and an analysis of the time-of-flight (TOF) method is given in 

that report .  

character is t ics  of the apparatus pertaining to  the scattering experi-  

ments together with details of the target .  

The following description is a summary  of the important 

2 . 2  VACUUM SYSTEM 

The vacuum sys tem consists of a cylindrical tank divided 

into three chambers,  each of which has  separate  pumping. The 

t e s t  chamber occupies a pie-shaped 243" sector .  

high-pressure bottle source expands through a 0 . 0 6  mm diameter  

nozzle into the exhaust chamber. The co re  of the expanded je t  is 

then skimmed off and collimatedand en ters  the ta rge t  chamber  with 

an angular spread of about 22" and a beam diameter of about 5 nun 

at the target. 

shown in Figure 2 . 2 .  1. 

Gas f rom a 

The relative location of the various components is 

A t e s t  chamber p re s su re  of about t o r r  

4 
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is observed without the gas  load of the beam; however, this  p r e s s u r e  

increases  t,o about t o r r  with the beam in operation. 

2 . 3  BEAM SOURCE 

Room tempera ture  sources  of argon and nitrogen were  used 

for the present experiments at typical source  p re s su res  of about 

1420 and 2860 t o r r  respectively. At these p re s su res ,  incident 

molecular beam speed rat ios  of 18. 5 and 13.6 were  measured for 

argon and nitrogen, respectively, with incident beam "currents" of 

about 1. 6 X 10l6 particles/sec.  for both gases .  

2 . 4  TARGET 

Polycrystalline ta rge ts  of unpolished nickel stock with a 

manufacturer ' s  stated purity of 99. 9770 were used. Each target  

was mounted on a s ta inless  s teel  block a s  shown in F igure  2.  4. 1 

and chemically cleaned before installation in the vacuum chamber.  

A coiled tungsten filament, installed inside the heater  block and 

connected to  a 12 volt d. c.  power supply, heated the ta rge t  t o  

temperatures  as high as 1000°K.  The filament was usually 

biased at a positive potential t o  suppress  electron emission at  

high filament tempera tures .  A chromel-alumel  thermocouple, 

connected at the top of the target  surface,  measured  the surface 

temperature.  The junction of this thermocouple was made small 

-1 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 
I 
I 
1 
1 
1 
1 
1 
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compared to  the target  dimensions t o  prevent any appreciable 

scattering of beam part ic les  and to  prevent any appreciable heat 

conduction away f rom the target.  

The ver t ical  axis of the ta rge t  holder was located in the 

center of the cylindrical vacuum tank. 

positioned externally in three-dimensions (for alignment) and 

could be rotated 360" about the ver t ical  axis for  varying the 

angle of incidence. The ta rge t  axis was aligned, by optical 

methods, coincident with the centerline of the vacuum chamber.  

(The centerline of the incident molecular beam in te rsec ts  the 

tank centerline in a right angle. 

centered a t  this intersection. ) Then, the ta rge t  elevation was 

adjusted such that the beam centerline intersected the ta rge t  

axis a t  the ta rge t  midpoint. The position of the ta rge t  midpoint 

with respect  to  the incident beam centerline was determined by 

observing the intensity of the direct  beam downstream of the 

target  a s  a function of ta rge t  elevation (with 8 = 0). 

method of alignment, the position of the target  midpoint was 

known to be within 2 0. 5 mm of the center of rotation of the 

detector. The angular position of the target ,  indicated on a 

polar scale located outside the chamber,  could be read t o  

within - to. 5". Due to  the geometry of the time-of-flight 

detection system, the limiting angle of incidence 8 was 

determined by the condition that the detector should see  the 

ent i re  target a r e a  illuminated by the incident beam. 

The ta rge t  could be 

The detector rotates  in an  a r c  

With this  i 

i 

F o r  an 
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i r i c  iderit bcaani diameter  of 5 mm at  the ta rge t ,  the maxirniim angle 

o f  i n r  ident t' w d s  7 4 " .  

reflected beam particles could not be measured  for 8. > 74O. 

Therefore,  t rue  spatial  distributions of 

1 

Three  target  specimens f rom the same  stock were  used 

(hereafter r e fe r r ed  to  a s  Nickel I, 11, and 111). 

t o  a different "heat treatment,  " the effects of which will be d i s -  

cussed in detail in Section 4. 1 .  

f la t s ,  while Nickel I11 was bent into a U- shaped channel with the 

s ides  of the U extending over the top and bottom of the heater  

block. 

m o r e  uniform tempera ture  distribution a c r o s s  the surface a t  

high target  temperatures .  T o  observe this distribution for  a 

heated target ,  reflected beam measurements  were  made  at  &n 

indicated surface temperature  of about 900 " K  with the target  

normal  to  the beam centerline (0 .  = 0") while moving the ta rge t  

a c r o s s  the incident beam. 

character is t ic  s gave an  indication of the variations in local surface 

temperature .  

l e s s  for the Nickel III configuration than for  the Nickel 1-11 config- 

uration. Therefore ,  measured ta rge t  tempera tures  likely do not 

reflect the mean surface temperature  a s  closely for  Nickel I and 11. 

Each was subjected 

Nickel 1 and IT were  rectangular 

The la t ter  design was chosen in an attempt to  produce a 

1 

Relative changes in reflected beam 

Measurements indicated that this variation was much 
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2 . 5  T O F  METHOD 

After scattering f rom the target ,  the  beam part ic les  pass  

through a slotted rotating disk (or chopper) which produces short  

pulses of particles. The particle pulses then spread, according 

to  the relative distribution of particle speeds in each pulse, in 

their  transit  f rom the chopper to  an ionization detector (sensitive 

to  instantaneous particle density) which monitors the i r  t ime of 

arr ival .  

The chopper and detector a r e  mounted on a table which 

can be rotated over an angular range of 200" about the target  

midpoint. 

formed by the incident beam axis and the ta rge t  normal.  

All present  measurements  a r e  limited to  the plane 

Chopper - The chopper is designed consistent with the 

resolution requirements as set forth in reference (4). 

wheel has a mean radius of 7 . 6  c m  and has  four equally spaced 

slits with a slitwidth of 0. 508 cm. Typical chopper per ipheral  

speeds were about 0 .6  X 104cm/sec for room tempera ture  ta rge t  

experiments and about 1. 0 X 104cm/sec for  hot targets .  A light- 

photocell pickup is located on the side of the chopper opposite 

the beam to m a r k  the z e r o  in the flight time. 

c m  f rom target  midpoint t o  chopper and a flightpath L f rom 

chopper to detector of 25. 4 c m  were  used for  all scattering 

experiments . 

The chopper 

A distance of S. 1 

-I 
I 
I 
U 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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-- DeteLtor - The detector was of the through-flow ionization 

by Hagena, - et al. (4) After passing through type, a s  documented 

the chopper, beam particles enter  the active zone of the detector 

where a smal l  fraction of the par t ic les  a r e  ionized by a bombarding 

electron beam entering normal t o  the reflected beam. 

collected ions form a current proportional to  the average instan- 

taneous par t ic le  density overthe active zone of the detector. 

current  is passed ac ross  a load r e s i s to r  R 

a c r o s s  this res i s tor  is amplified, passed through a signal-averaging 

device to  reduce signal noise, and recorded on an x-y plotter. 

final detector signal at a given t ime t i s  then 

The 

This 

the voltage drop L; 

The 

(2. 1 )  
S ( t )  = i + (t) X RL X Amplifier-Gain. 

d '  

4- 
The ion current  i (t) 

n(t)  

is related to the instantaneous average density 

over the ac.tive zone of the detector as follows: 

= the effective ' eff where 

ionization c ros s -  section between electrons and beam particles 

arid I eff 

detector. 

be converted to  units of detector particle density i f  a t 1  of the 

quantities on the right side of Equations (2. 1) and (2. 2)  a r e  known. 

i- = ionizing electron beam curren t ,  

= the electron path length in the active zone of the 

Therefore,  the recorded detector signal Sd(t) may 



12  

The unknowns in the la t ter  equation a r e  determined by calibration 

with a direct  molecular beam of known density. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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SECTION 111 

DATA REDUCTION 

3 . 1  PARAMETERS O F  THE TOF CURVE 

In o rde r  to  simplify the analysis of the T O F  distributions, 

it is convenient t o  descr ibe  them by cer ta in  character is t ic  t imes .  

F igure  3 .  1. 1 is a reproduction of some actual recordings of TOF 

distributions at var ious angles of reflection 8 

sca t te red  f rom a room temperature  target .  

divides the measured  signal into 100 equal time intervals;  each 

for nitrogen r 

The signal analyzer 

s tep  in the curves corresponds t o  one of these  intervals.  The 

signal f rom the photocell at the beginning of each curve m a r k s  

approximately the z e r o  in the time-of-flight. Added t o  the figure 

a r e  the relation ot signal height t o  par t ic le  density, the i-UF 

scale ,  and three  character is t ic  t imes .  

T O F  at Maximum Signal - The T O F  at maximum signal 

is used to  give an indication of the average  par t ic le  speed. tm 

F o r  an ideal oven- beam o r  high speed rat io  nozzle--beam T O F  

distribution, t is directly re la ted t o  the mean speed. For 

the present  TOF distributions of scat tered beams the exact 

m 

relation between t and mean speed must  be obtained by 

numerical  integration. 

m 

13 
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Figure 3 .  1. 1 Sample R e  cording of TOF Distributions 
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-- T O F  at  Half-Maximum Sipnal - The width of the distribution 

At = t 2  - t l  at half-maximum signal is indicative of the the rma l  

velocity spread,  where t l  and tz a re  the TOF'  s at  half-maximum 

signal ( t l  < tz). The ra t io  t /At is indicative of the speed rat io  

S. 

m 

F o r  an ideal oven-beam distribution, one can showthat t /At has  the m 

value 1. 08 independent of temperature ,  while for  a high speed rat io  

nozzle-beam (S >> l ) ,  i t s  value i s  given a p p r ~ x i m a t e l y ( ~ )  by 

t / a t  M S / 1 . 6 7 .  m 

Therefore ,  this ra t io  is  useful for comparing the. experimental  

T O F  distributions with that for an oven-beam or the incident 

nozzle- beam. 

The quantity t2/t1 is used as a pa rame te r  for  fitting given 

analytic expressions to the experimental  distriburions ana wiii be 

discussed in Section 3 .  2,  and the Appendix. 

Determination of Flux -. - An approximate pa rame te r  of the 

experimental  TOF distribution is used in lieu of the t r u e  reflected 

flux. It is given by 

Sd(tm) - At 
1 % -  

tmT 
( 3 . 2 )  

where S (t ) is the maximum signal height and 7 is  the half- 

width of the shutter function, i. e . ,  the init.ia1 pulse width a t  

half-maximum, as defined by Hagena, et al. (4) The quantity 

d m  
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S (t ) - At/T i s  proportional t o  the sca t te red  beam density n 

if  the beam were not choppecl and l/tm is approximately 

proportional to  the average speed. 

functionally similar at a l l  angles of reflection (i. e . ,  may  be 

reasonably expressed in some common analytic form),  the given 

expression is a valid first approximation for  obtaining the 

scat tered flux distribution. Since an exact expression for I would 

involve numerical integration of the experimental  distributions,  

which for the  present  resul ts  would not be a worthwhile task ,  

Equation (3 .  2 )  i s  used to  give a qualitative picture of'the scattering 

process .  

d m  0 

If the TOF distributions a r e  

The quantity I in the data is then that given by ( 3 .  2 ) .  

3 . 2  MOMENTS O F  THE T O F  CURVE 

The measured T O F  distributions provide detailed information 

relatable to the scattering process. 

average properties (or moments) of the reflected distributions, i. e . ,  

mean translational momentum and energy of reflected particles.  

These moments may be calculated ei ther  by numerical  integration 

of the measured distribution or  by d i rec t  integration of some 

analytical expression which accurately represents  the experimental  

distribution. 

It is helpful t o  know cer ta in  

Numerical Integration - It is straightforward to  show that 

the average translational momentum of partic 1.es leaving the surface 

I 
1 
I 
I 
1 
1 
1 
1 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 
I 



a t  d given aiigle or i s  given by 

Oo sd(t) 
m L J  - dt 

.- 0 t2 

O0 ' , O F  
mv  = 

dt 
0 

( 3 .  3) 

where S (t) is the measured TOF distribution (or  detector signal) d 

arid the integral represents  numerical  integration over t ime space.  

Similarly,  the average translati-onal energy is 

Equations (3. 3) arid (3. 4) may be applied direct ly  t o  any experimental  

TOF curves i f  the resolution R = A t / 7  

the T O F  curve-shapes a r e  independent of R ,  i. e . ,  a r e  directly 

related to  the speed distribution in the unchopped beam. 

resolution is not sufficient, the moments mus t  be determined by 

the inversion o i  a c onvotution integral  involving the shutter-function. 

This integral  has  been evaluated by Hagena, e t  al. (4), for a tr iangular 

shutter function using ideal oven-beam and nozzle-beam distributions, 

giving the measured  At in t e r m s  of the ideal half -width At a s  a 

function of R.  Using corrections derived from this analysis,  the 

effects of resolution on low-order moments  have been estimated €or 

is sufficiently gredt  so  that 

If the 

0 
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the present experiments using the curve-fi t t ing method outlined below. 

It shows that in the resolution range used the moments  should not be 

in e r r o r  by m o r e  than 370. (See Appendix. ) 

Moments f r o m  Fitted Curve - While the numerical  integratioqs 

involved in Equations (3. 3) and (3. 4) a r e  simple,  their  u se  would be 

overly t ime consuming for  the present  experiments.  

for  obtaining the desired moments  has  been applied here .  

functional expression with four f r ee  pa rame te r s  t o  the measured  TOF 

distribution. 

The functional form used is 

Another method 

It fits af ixed 

The moments a r e  then functions of these parameters .  

( 3 .  5) 

where the four f r ee  parameters  a r e  n p and t (which for the 

functional form a r e  indicative of beam density, beam thermal  

spread,  and mean speed, respectively) and a f r e e  fitting exponent 

n. The corresponding relative distribution of reflected flux dI/dv 

is 

0, 0 

n- 1 
dI/dv oc n 0 v exp[- pz(v - v,)~] (3.6) 

where v = L/to. 

s o  that no is  no longer important. 

(G P L/to) can be adjusted such that S (t) fits the measured  

F o r  qualitative discussion, Sd(t) is normalized 
0 

The two pa rame te r s  fl  and S 

d 
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distribution at: t,he two points t l  and tz. In the Appendix procedures 

required for this type of curve fitting a re  descr ibed in detail,  and a 

comparison is made between moments  obta.ined by this method and 

t h o s e  obtained by numerical  integration. 

indicate that Equation ( 3 .  5) provides a reasonably accurate  fit for  

the measured  TOF distributions and yields moments which ag ree  

wit.hin 57'0 of those numerically computed 

dnalyzed. 

The resu l t s  of this analysis 

for the curves  which were  



SECTION 1V 

EXPERIMENTAL RESULTS 

4 . 1  "DIRTY" ROOM TEMPERATURE TARGET 

Flux Distribution - F o r  a "dirty" room tempera ture  

target  with both argon and nitrogen incident beams,  the d is t r i -  

bution of scat tered flux is almost completely random as shown 

in Figure 4. 1. 1. By "dirty" it is  implied that no attempt has  

been made t o  outgas the surface and no type of heat t reatment  

has  been given that would affect the c rys ta l  s t ruc ture .  

the target  was covered by a layer  of adsorbed gases  and had the 

c rys ta l  structure of the mater ia l  as rolled. 

in Figure 4. 1. 1 is for diffuse reflection in which the direction of 

scat tered particles &-odd tz completely- raridoiii rcsalting ir; z 

flux distribution which is proportional t o  cos er(usually r e fe r r ed  

to  a s  cosine-law scattering).  

slight lobular (or preferential)  type of scattering compared with 

purely diffuse reflection; however, this  slight disagreement is 

within the limits of the approximate method used to  determine 

the flux I f rom the experimental  T O F  distribution. 

measurements of Hurlbut(6) show a similar type of spatial  

distribution for var ious gases  and ta rge ts .  

Therefore ,  

The solid line shown 

Both argon and nitrogen show a 

The ea r l i e r  

All flux measurements  for F igure  4. 1. 1 and subsequent 

data have been normalized by Io which is the measured  flux 

20  
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at O r  = 0 for the condition of a "dirty" room tempera ture  target .  

(Measured values of Io for argon and nitrogen differ by about 

207'0. ) The rat io  I/Io may then be used as a comparison of other 

data with this random type of scat ter ing and gives the relative'  

"lobularity" of other reflected flux distributions. 

is used loosely here  and af terwards t o  charac te r ize  the maximum 

degree of variation of I f rom that for  cosine-law scattering. To 

check the absolute magnitude of the value for  Io, the  total  incident 

f l u x  was calculated using Io and assuming completely diffuse 

scattering. This calculated value is 10% l e s s  than the total  incident 

f lux  measured by Hagena, - et al. (4) for argon and about 10% grea te r  

for nitrogen. 

complete diffuse scattering and in the approximate methods of 

obtaining the flux f rom the measured  TOF distribution, as well as a known 

uncertainty in the values of the incjdenr: f l u x  for the present  experiments. 

"Lobularity" 

These disagreements reflect  the e r r o r s  in assuming 

TOF Distribution - Measured TOF distributions (for the 

same reflected nitrogen data of Figure 4. 1 .  1 )  a r e  shown for two 

angles of reflection in Figure 4. 1. 2 

Maxwellian-type distribution corresponding to  the effusion f rom 

the target  surface at the measured ta rge t  temperature .  The 

Maxwellian TOF distribution would be expected for complete 

accommodation of the incident gas  t o  the energy of the surface.  

It has  the functional form 

in comparison with a 

Sd(t) oc: - 1 exp (-p;LZ/tz) 

t4 
(4. 1) 
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where o s  = 

part ic les  scat tered normal  t o  the ta rge t  ( er  = 0") agrees  

relatively well with the predicted curve,  although the re  is a 

deficiency of measured par t ic les  on the low-time (high- speed) 

side of the distribution. 

l a rge r .  At 8 = 6 0 ° ,  the measured  TOF distribution is con- 

siderably m o r e  narrow than the fully accommodated Maxwellian 

and the measured tm reflects a higher mean speed, This 

indicates that the reflected beam tends t o  appear m o r e  like 

the incident beam whose half-width and tm a r e  shown in this 

s ame  figure. Similar resul ts  were  observed for argon. Therefore ,  

the mat te red  particles exhibit a varying degree of accommodation 

t o  the surface energy a s  a function of angle of reflection. 

m /2kT . The measured  T O F  distribution for  c 

Also, the measured  tm is slightly 

r 

The measured signals have been normalized to  unity at 

their  maximum and the time-of-flight normalized by t*, the t ime  

at which the maximum occurs in the fully accommodated 

Maxwellian distribution. The rat io  of t t o  t* for any measured  

distribution, therefore,  gives an indication of the degree t o  which 

the scat tered particles have been accommodated to  the surface 

temperature.  

m 

4 . 2  E F F E C T  OF SURFACE TEMPERATURE AND 

TEMPERATURE HISTORY 

F o r  low incident beam and target tempera tures  where 

the energy difference i s  very small, it is seen he re  that 
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the spatial  dist rjbution of‘ scattered par t ic les  i s  reasonably that 

for  diffuse reflection. However, marked  deviations were  

observed by Smith and Fite(7) and Hinchen and Foley(8) with 

var ious gases  and ta rge ts  f o r  ce r ta in  beam and target  t e m -  

pera tures .  These deviations were  such that the scat ter ing 

pat terns  were  highly preferential  even for  polycrystalline 

ta rge ts .  With the present  apparatus,  it was des i red  to  repro-  

duce at  least  the qualitative nature  of these scattering experi-  

ments  s o  that the addition of speed distribution measurements  

would provide a m o r e  complete picture of the scattering 

processes .  

E f f e c t  of Temperature  History at  Fixed 8, - Starting 

with a room tempera ture  target which had near ly  a cosine 

distribution of f ! w ,  the target tempera ture  was increased 

continuously to  1000°K and then allowedto c:ool t o  about Y U U ‘ K  

where it w a s  kept constant for severa l  hours .  With a nitrogen 

beam at 8i = 60” ,  the signal height Sd(tm) was monitored with 

the detector at €lr = 6 0 ” .  

in S (t 

scat ter ing pattern. 

in F igure  4. 2 .  1 as a function of heating t ime.  

At  this  angle of reflection, an increase  

) corresponds t o  an increase  in the lobularity of the d m  

The results of this  heat t rea tment  a r e  shown 

Since about t h ree  

minutes were  needed to  average and record  a T O F  signal, 

measurements  made during unsteady conditions a r e  in e r r o r  

to  that extent. 
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I t  i s  seen that  the incredje  t o  1000°K does not great ly  

ch. inge S (t ) ur tm/At, while heating at  900°K for  d period 

of several  hours  produces a highly lobular type of pat tern with 

an  accompanying inc rease  in /At. After the measu red  tm 

S (t ) had reached a final steady- s ta te  value, the t empera tu re  

was again jnc r eased  t o  about 1000°K. 

lobularity tended t o  be destroyed a s  shown by the sha rp  dec rease  

in Sd(tm). 

immediate r e tu rn  t o  the lobular behavior. 

d m  

d m  

The resul t  was that the 

However, cooling back t o  900°K caused an almost  

The reaul ts  in Figure 4,  2,  1 a r e  for  Nickel 11. Similar  

resu l t s  were  observed for  Nickel 111, although the magnitude 

of the lobularity was slightly different. 

As a resul t  of t hese  experiments ,  i t  was found that two 

F o r  convenience distinct types of t a rge t  conditions occurred.  

in discussing the following da ta ,  "heat t reatment"  i s  defined as 

heating i n  a vacuum f o r  severdl hours at 900 - +50"K. Conditions 

before prolonged heating at 900°K will be r e fe r r ed  t o  as "dirty" 

target conditions. 

heating a t  900°K f o r  several  hours.  

conditions a s  "clean" and "dirty" a r e  used for qualjtat,ive 

discussion only and do n o t  necessar i ly  descr ibe  t r u e  su r face  

c onditiops which present  experiments do not yield. Heating 

at 1 0 0 0 ° K  destroys the result3 of previous "heat t reatment"  

and produces r e su l t s  s imilar  t o  those before heat treatment.  

"Clean" ta rge t  conditions existed only af ter  

Descriptions of target 
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Effect of Heat Treatment  on Reflected Spectrum 

(a) "Dirty" Targe t  - A comparison of the sca t te red  

nitrogen beam pa rame te r s  as a function of 8 r 

Figure 4. 2. 2 for var ious target  tempera tures .  

shows the resul ts  for  "dirty" ta rge t  conditions and indicates a 

relatively diffuse spatial  distribution for all th ree  ta rge t  

temperatures ,  being only slightly lobular at the higher tem-  

peratures.  A list of the important s teps  of the "heat treatment ' '  

fo r  Nickel I1 and the resulting flux distribution is given below in 

i s  given in 

F igure  4. 2. 2(a) 

chronological order :  

"Heat Treatment" Nickel I1 

(1) 295°K 

(2) 1025'K for severa l  hours 

(3) Cooled quickly to  771 "K 

(4) 295'K 

(5) 903°K for  severa l  hours 

(6) Cooled to  295°K 

(7) 903°K for  severa l  hours  

(8) Cooled t o  545°K 

(9) 1025°K for few minutes 

Flux Distribution 

Nearly cosine 

Slightly lobular 

Slightly lobular 

Nearly cosine 

Highly lobular 

Slightly lobular 

Highly lobular 

Highly lobular 

Slightly lobular 

The data for  Ts = 295" and 771°K in F igure  4.2.  2(a) were 

obtained in steps (3)  and (4) and therefore  indicate that no 

permanent change occurred in the sur face  s t ruc ture  even by 
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( b )  NICKEL II TARGET AFTER HEAT TREATMENT 

I/Io, tm/ti, and t,/At with 

Scattering Angle: Nitrogen Beam, €Ii = 60° 
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prolonged heating at 1025°K. Of fur ther  note, the resu l t s  shown at 

T = 1025°K were actually independent of any previous heat t rea tment  

at lower temperatures .  This unique behavior due to  heating at 1025°K 

S 

was quite repeatable; however, the exact cause is still uncertain. 

The variations of tm/ti (where t. is the  T O F  at maximum 
1 

signal for the incident beam) and tm/At (which i s  an indication of 

the speed ratio) show that accommodation to  the surface tempera ture  

va r i e s  slightly a s  a function of 8 

while t /At has  the constant value of about 1.08, the values of 

t /t. a r e  indicated by a r rows  for the different temperatures .  At 

the higher ta rge t  temperatures ,  

always l e s s  than that for the incident beam, but g rea t e r  than that 

F o r  complete accommodation, r' 

m 

m i  

for the reflected beam is tm 

corresponding to complete accommodation. F o r  a room tempera ture  

target ,  tm for the reflected beam is always g rea t e r  than that for the 

incident beam; however, the degree of accommodation depends m o r e  

strongly on the angle of reflection. 

always greater  than that for  complete accommodation for  all t h ree  

temperatures  but always less than for the incident beam (tm/Atz8 

for  the incident Nz beam). 

The values of tm/At a r e  

(b) "Clean" Target  - As was indicated in Figure 4. 2. 1, 

prolonged heating at 900°K caused a definite change in the 

scattering process .  The resul t  i s  that the spatial  distribution 

tends to  be m o r e  specularly directed. Although t rue  specular 

reflection, i. e . ,  no change in velocity and 8 = 8 does not 

occur,  the f lux  distributions become highly 1-obular at elevated 

r i' 
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t a rge t  tempera tures  as seen in F igure  4. 2. 2(b). The distribution 

a t  room tempera ture  i s  a lso m o r e  lobular than for "dirty" target  

conditions, indicating a permanent change in surface conditions. 

This  lobular type of scattering for  "clean" ta rge ts  was always 

reproducible by prolonged "heat t reatment"  at about 900°K as 

seen  in the target  history on page 28 . Lobe maxima do not 

occur  precisely at  the specular angle, but a re  shifted away f rom 

the specular  angle toward the surface normal .  This shift is  a l so  

observed by Hinchen and Foley (8 1 . 

There  a r e  a l so  differences in the T O F  distributions for  

clean" and "dirty" conditions. Values for t /t show l a rge r  

for  a target. af ter  heat t reatment  than before 

II 

m i  

variations with 8 

heat t reatment  and have definite minima (corresponding to  

r 

maximum thermal  accommodation). However, the angular 

iocatlons of these minima do not show any definite correlation 

with the maxima in the flux distributions. 

measurements  by Hinchen and Malloy") and T O F  measurements  

Average velocity 

by Moran, - et al. ( lo)# confirm this angular dependence of 

accommodation with the la t ter  showing variations of t with 

8 

t / t .  > 1 suggests negative the rma l  accommodation. F o r  a 

t r u e  representation of momentum arid energy accommodation, 

m 

similar to the present  results.  At la rge  angles of reflection, r 

m i  

taking into account the thermal  spread  in the distributions,  the 

accommodation would likely still be positive. The ratio tm/At 
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is much la rger ,  for  B r >  0 " ,  af ter  heat t rea tment  and inc reases  

a lmost  linearly with 0 

maximum value of 2. 2 for tm/At indicates c lear ly  that the effect 

of the scattering process  is still t o  greatly increase  the the rma l  

for T s  = 545" and 903°K. However, a r 

velocity spread over that  of the incident molecular beam. 

4 . 3  EFFECTS O F  ANGLE O F  INCIDENCE AND BEAM GAS 

MOLECULAR WEIGHT 

Angle of Incidence - Preceding resul ts  have corresponded 

to  a single angle of incidence. 

incidence were measured using Nickel I1 at a tempera ture  of 

903°K and  a r e  presented in Figure 4. 3 .  l(a). 

was selected because this data shows the most  pronounced 

variations. 

three incident angles. 

increases  with increasing angle of incidence as does the deviation 

of the maxima f rom the specular angle. The width of these lobes 

at half maximum does not vary  greatly with angle of incidence. 

The effects of varying angle of 

This tempera ture  

Lobular flux distribztions were  observed f n r  a!! 

The angular position of the lobe maxima 

r The T O F  distributions show similar variations with 0 

for  all three incident angles. 

for 8. = 70"  based on tm/t. and for  0 .  = 40" based on values of 

t /At. 

and energy accommodation must  be obtained f rom the moments  

Maximum accommodation occurs  

1 1 1 

This fur ther  i l lustrates  that  a c l ea r  picture of momentum m 
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of the measured distributions and not f r o m  these s imple 

parameter  6. 

Beam Gas Molecular Weivht - Reflected beam charac te r -  

i s t ics  a r e  presented in F igure  4. 3. l(b) for  incident molecular 

beams of argon and nitrogen. 

of the scattering a r e  not too different for  monatomic argon and 

diatomic nitrogen. 

scat tered flux with the displacement of the lobe maximum f rom 

the specular angle being grea te r  for argon. 

maximum lobe heights may be a reflection of the slightly higher 

incident flux for nitrogen which resulted f rom using slightly 

different nozzle- skimmer separztion f rom that used for  previous 

data. 

It is seen that the general  features  

Both gases  resul t  in a lobular distribution of 

The difference in 

The TOF distributions show similar variations o f t  /t m i  

= 80" .  for the two gases ,  with both reaching tm/ti = 1 . 0  at 8 

Variations in t 

argon having only slightly higher values at large 8 

r 

/At a r e  almost identical for  the two gases ,  with m 

T' 

4.4 MODIFYING INFLUENCES ON THE DATA 

Effect of Resolution - Chopper speeds were  kept constant 

f o r  a given set  of measurements  at a given target  temperature .  

As a result, the resolution R var ied due to  changes in At f o r  the 

34 
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rneasured TOF distributions. 

4 and 5. 

of At a r e  2% higher than for R - 00. 

Typical ranges for R were between 

F o r  R 2 5 Hagena, et al. (4) show that measured  values 

All data  presented s o  far have 

not been cor rec ted  for  non-infinite resolution. The effect of 

resolution on the moments  
- 

and vz of the TOF distributions is 

discussed in the Appendix. 

Changes in Incident Beam Flux - Experiments were  conducted 

in which the incident beam flux was reduced by a factor of about 2 

by increasing nozzle- skimmer separation in o rde r  t o  determine the 

effects of incident bttamflux on the build-up of adsorbed layers  of 

beam particles.  Measurements at target  tempera tures  of 295°K aiid 7 3 2 ° K  

show no appreciable effect on the observed T O F  distributions due 

to  reducing incident flux, with rm/At changing by l e s s  than 1% at 

the representat ive values of 8 chosen for  observation. Scattered 

t lux patterns were  a l so  reproducibJe to  within a few percent of the 

r 

peak flux. 

C h a n E  - in Background P r e s s u r e  - For a typical tes t  

chamber  p re s su re  of about t o r r ,  it  is desirable  that the 

magnitude of the flux of background par t ic les  incident on the 

ta rge t  not affect the T O F  measurements .  With a nitrogen beam 

a t  8 .  = 60"  incident on a target at 900"K, the tes t  chamber  

p re s su re  was increased to  4 X 

1 

t o r r  by bJeedirig air into 

the system. 

that an indication of the effect on lobularity of the reflected 

Measurements were  made at 0 = 0 "  and 40" s o  r 
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distribution could be obtained. 

significant decrease  in the lobularity of the scat ter ing pattern,  

although the TOF distributions showed changes of only about 1% 

in t 

low pressure  scattering pattern as the p r e s s u r e  dropped below 

This p re s su re  increase  caused a 

/At. Decreasing the p re s su re  resulted in res torat ion of the m 

to r r .  Also observed at a p r e s s u r e  4 X lo- '  t o r r  was an 

increase  in the signal due t o  background par t ic les  with no 

incident beam. 

the r a t e  of background par t ic les  reflecting off the ta rge t  into the 

detector and (b) increase the ra te  of background par t ic les  coming 

(not f rom the ta rge t )  through the chopper and being detected 

(appearing to  come f rom the target) .  The measured  background 

signal at  this higher p re s su re  with beam off was about 570 of the 

total  s igna l  with the beam on nt 8 = 40"; however, at a normal  

chamber p re s su re  of about l ou7  t o r r ,  no background signal was 

detected with the beam off. Therefore,  in the range of normal  

operation, the measured  signals were  not significantly affected 

by background particles.  

Increased background density will (a) increase  

r 

4. S REPEATABILITY 

The repeatability of the data was l imited pr imari ly  by 

the reproducibility of surface conditions. As pointed out, the 

resu l t s  were not affected appreciably by variations in  incident 



37  

I 

beam f l u x  o r  background part,i(:le flux. Measurements  with the 

so- c-alled "dirty" ta rge ts  usually gave better repeatabil.ity than 

the "clean" targets .  

37'0 for I and t /At measured on various dates  for  ta rge ts  

which were,  for  all experimentally controllable conditions, 

the same.  

what by the exact temperature  history o€ the target .  

quantitative measurements  for these did not repeat as well as 

for  "dirty'! targets .  Above this, the variations of all of the 

observed parameters  were  qualjtati.vely the same for  all 

repeated experiments. 

be seen 'by comparing the nitrogen data  at '3. = 60"  for Nickel I1 

(Figure 4. 3.  l(a)) with that for Nickel 111 (Figure 4. 3 .  I(b)). 

Agreement: for  "dirty" ta rge ts  was about 
.: 1. 

m 

Results with a "clean" ta rge t  were  infl.uenced some- 

Therefore ,  

An example of this reproducibility may 

1. 

in general ,  the experi.menta1 TOF measurements  a re  

.more repeatable since they a r e  not affected as strong1.y by 

heat t reatment  as the f l u x  distributions. T O F  pa rame te r s  

t 

experimental  conditions. 

and A t  were repeatable to  within about. 27'0 for  all comparable rn 



SECTION V 

COMPARISON TO VARIOUS MODELS 

5 .1  DIFFUSE REFLECTION MODEL 

One of the ear l ies t  models for  gas-  surface interactions 

is the diffuse reflection model("). 

with regard to the interaction a r e  as follow : (1) The direction 

of the velocities of the gas molecules,  a f te r  impact, will have a 

completely r,andom distribution. 

Two basic  assumptions made  

This resu l t s  in the so- called 

cosine law" in which the f lux  re-emit ted into any given unit I i  

solid angle is given by 

I cos e r 

where Io = the f l u x  emitted normal to  the surface.  (2) The 

re- emitted gas  molecules will have a fully- accommodated 

Maxwellian speed distribution as if the molecules effused f rom 

an oven source located on the surface,  such source in the rma l  

equilibrium a t  the surface temperature .  

Experimental measurements  by Hurlbut(') support the 

first of these two assumptions,  at least  for ca ses  in which the 

energy difference between the incident gas  and the surface is 

small. Results f r o m  the present investigation a l so  exhibit 
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reasonable agreement with the cosine law for d room-temperature  

incident beam and a room-temperature  "dirty" target .  

It has been found that the second of these assumptions is 

not necessar i ly  valid even for small tempera ture  differences.  

The energy of the re-emitted gas does not always correspond t o  

full accommodation. F o r  this reason,  a the rma l  accommodation 

c o e ff ic i ent was int r odu c e d (") and deiined d s  follows: 

Tr - Ti 
C Y =  T - T .  

S 1 
(5.2) 

where the subscr ipts  i, r ,  and s reier to  the incident gas ,  

reflected gas,  and surface respectively. Similar  expressions 

m a y  be defined for accommodation of normal  and tangential 

momentum. However, the relation (5. 2)  may be used only when 

the mean energies  can be expressed In the fo rm 2kT/m . It is 

therefore  applicable only when the velocity distributions of the 

incident and reflected particles can be represented by a 

Maxwellian function. 

even in cases  where the flux distribution may obey the cosine 

law ( s e e  Figure 4. 1. 2 ) .  

g 

Present  resu l t s  indicate this is not t rue ,  

A m o r e  general  definition of accommodation 

must  be used such as 

E .  - 
1 r 4 

CY s(Ei9 i ) = Ei - 2kTs./mg r- , ( 5 .  3 )  
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where LY i s  the accommodation coefficient for  par t ic les  of 

energy E. approaching the surface along vector  1 and 
1 r 

is  the average energy of these par t ic les  upon reflection. 

S 
? 

5 . 2  SPECULAR REFLECTION 

Another simple type of interaction is  that of specular 

reflection in which the particles interact  elastically with the 

(assumed plane) surface with no change in momentum o r  

energy. 

of incidence, and the speed distribution of reflected par t ic les  

i s  the same as that in the incident beam. 

reflection was not observed in the present  experiments,  strong 

preferential  scattering in the form of nar row lobes did occur for 

hot surfaces which had received a specific type of heat t reatment  

(see Figures  4. 2 .  2(b) and 4. 3 .  1). 

of the lobe maxima did not coincide with the specular angle but 

were displaced toward the surface normal;  the positions of these  

maxima were a l so  related to  the target  temperature ,  angle of 

incidence, and beam gas molecular weight. Measured TOF 

distributions show that the thermal  spread in the scat tered beam 

is always much g rea t e r  than that of the incident beam, fur ther  

indicating that specular reflection does not occur.  

The angle of reflection therefore  equals the angle 

Although t r u e  specular 

However, the angular positions 
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5 . 3  HARD-CUBE MODEL 

A model for the gas-surface interaction has  been proposed 

by Stickney(L) which has proved useful in describing the lobular- 

type spatial  distributions presented in Sections 4. 2 and 4. 3.  

model a s sumes  that the gas  molecules behave a s  hard spheres and 

the solid a toms a s  hard cubes. 

e las t ic  with the tangential component of velocity unchanged. 

such a classical  mechanics approach, accounting for the d is t r i -  

bution of speeds in the incident beam and assuming a one-dimensional 

Maxwellian distribution for  the motion of surface atoms,  the theory 

gives an expression for  the distribution of scat tered flux which 

ag rees  with experimental results.  

The 

The collision process  is  assumed 

Using 

The theory predicts the following qualitative features  for  

lobular scattering : 

Let 8' = angular position of lobe maximum and r 

A 8  = 8. - 8' which gives deviation f rom specular angle. 
1 r 

decreases  and A 8  increases  with increasing surface 

temperature.  

and A 8  both increase with increasing angle of incidence. 

decreases  and A 8  increases  with increasing gas  

molecular weight. 
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All of these  features  agree  with the experimental  resu l t s  shown 

previously in Figures  4. 2. 2(b) and 4. 3. 1 a s  well a s  with the resu l t s  

of Hinchen and Foley(8). The la t te r  resul ts  a l s o  provide agreement  

with predictions for the effects of incident gas  temperature .  

These features  may be explained to  some extent on a 

physical basis.  

have more energy to  "push" the gas  molecules away in a direction 

normal  to the surface.  (2) As the angle of incidence is increased,  

the incident tangential momentum a l so  increases  which tends t o  

increase the probability of specular reflection. However, due t o  

the smaller  incident normal  momentum, the surface atoms may  

t ransfer  more  normal momentum for l a rge r  incident angles. 

two effects a r e  somewhat offsetting with the la t te r  seemingly taking 

predominance. (3 )  Heavier incident gas  molecules a r e  able to  

absorb more momentum and energy and therefore  a r e  "pushed" 

away from the surface m o r e  easily. 

(1) At high ta rge t  tempera tures ,  the surface atoms 

These 

Although the qualitative features  of lobular type 

scattering for  experimental  resul ts  agree  well with the hard-  

cube predictions, no numerical  comparisons have been made 

here ,  since the m a s s  rat ios  t . ~  used for the present  investigation 

(p = 0 . 4 8  for Nz 

for which the hard-cube model is expected to be valid. 

N i  and t . ~  = 0.68 for A Ni)  exceed the limit 

F o r  la rge  
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mass rat ios ,  multiple c 01 ~ i ~ i o r i s  probsbly oc cur  which a r e  not 

taken into a( c ount by tht- tht ory .  

Predictions for  the speed distributlorl of sca t te red  par t ic les  

a r e  given by Logan, et a]. ( I 3 )  for an incident beam with d 

Maxwellian speed distribution and by Stickney, et al. (I4) for amono-  

energetic incident beam. F o r  a Maxwellian incident beam, 

the hard-c  u3e theory predicts 'i Maxwellian distribution of speeds 

for  the scat tered par t ic les  w i t h  t h e  c or responding tempera ture  

depending on dngle of reflection. Similarly,  a monoenergetic 

incident beam resu l t s  i n  monoc r i t  rg t t i c  sca t te red  par t ic les  at. 

a given 0 . F o r  the preserit nozzle- beam experiments ,  the 

la t te r  resul t  should be more valid than the Maxwellian resul t  

and gives the following relation in t e r m s  of flight t imes :  

-- 

r 

t r / t i  s inBr/sir?e i o  

If we as sume  that t for piirposes of comparison, then 

Equation (5.4)  may be compared directly to  the resul ts  in 

Section IV with tm/ti. 

would vary  as s i n  8 rcachirig value of unity at 0 = 0 

which is the specular angle. 

Section TV fo r  "clean" hot targets  shaws that the variations 

tor  tm/ti with O r  do not follow thc predictions of the theory. 

In general ,  Equation (5. 4) y ie lds  v a l u e s  which a r e  lower than 

r tm 

For  a g i v e n  angle of incidence, tm/ti  

r r i 

Examination of the data in  

(5.4) 
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measured for  0 < 0 .  and values higher than those measured  for 

0 > 0 . .  

beam is assumed does not improve the agreement  with 

experimental resu l t s ;  however, it does allow an examination 

r i  

Use of the approach in which a Maxwellian incident r 1 

of the effects of target  temperature ,  angle of incidence, and 

incident g a s  weight on t and predicts the fo l lowing :  m 

(1) t /t. decreases  with increasing surface temperature .  

(2) t / t .  decreases  with increasing angle of incidence. 

( 3 )  t /t. decreases  with increasing molecular weight of 

m i  

m i  

m i  
incident beam. 

The present resul ts  agree  with all of the above predictions for the 

time-of-flight at maximum signal. However, the hard-  cube theory 

does not predict the cor rec t  resul ts  for the thermal  spread in the 

scat tered beam in the monoenergetic limit, probably due t o  its 

neglect of multiple collisions. 

5 . 4  ADDITIONAL MODELS 

- Nocilla’ s Re-emission Law - Nocilla(15) has  proposed a 

model for gas- surface interactions which concerns itself only 

with the reflected gas properties.  The r e -  emitted par t ic le  

velocity distribution is assumed to correspond to  a Maxwellian 
4 

superimposed on a mean velocity v and is of the fo rm 
0 

(5. 5) 
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+ - - 
where V fi: 'ind S r- vc, in t e r m s  of previous notation. 

Equdtion (5. 5) is then used to der lve an expression for  the 

r e -  emitted flux dlstribution in which S and 8 

(Or is the m g l e  between S 

pa rame te r s  may be adjusted until the derived expression for  flux 

gives the "bestli f i t  t o  a particular s e t  of experimental  data. The 

method providrs relatively good fits for  both cosine and lobular 

scattering patterns.  However, success  in fitting a given spatial  

distribution need not imply that the actual velocity distribution 

i s  of the assumed form.  It is evident f rom the resu l t s  of the 

present  investigation that in general  the distribution of reflected 

particle velocities cannot be fitted by a fo rm as simple as that 

suggested by Equation (5. 5). 

a r e  f r ee  parameters .  r 

and the surface normal . )  These 
+ 

Hinchen and Shepherd - A model s imi la r  to  the hard-cube 

model has  been proposed by Hixchen and Shepherd(16). 

the same  assumption of no  change in  tLngentia1 velocity in 

collisions and re la tes  the energy accommodation coefficient 

only to the normal  component of g a s  velocity. 

assumed value s for this accommodation coefficient, this model 

I S  able to  match the observed position of the lobe maximum in 

lobular scattering relatively well. 

It uses  

F o r  reasonably 

The model is useful for  

describing a par t icular  set of experimental  data and yields 

the same  predictions with Iegard t o  the speed of the reflected 

par t ic les  as the hard-  cube theory. 



"Roue;h-Surface" Model - While the hard-  cube model 

explains lobular scattering a s  a resul t  of t he rma l  motion, 

Healy(17) has shown that lobular scat ter ing could s t i l l  be 

attributed to  randomly rough surfaces.  

that  a l l  particles a r e  reflected specularly f rom surface 

elements which a r e  oriented at random. 

of a "roughness parameter"  agreement with experimental  

resu l t s  is obtained. The assumption of specular reflection is 

not a valid one based on the present resu l t s ,  since this  would 

imply that the speed distribution of reflected par t ic les  is the 

same a s  that in the incident beam. 

His model a s sumes  

By judicious choice 

However, the model does 

confirm the idea of increased dispersion of the sca t te red  

particles (i. e .  , wider lobes) for an increase  in surface rough- 

ness .  

Other Models - Many more  complicated models have 

been studibd; however, none have been developed t o  an extent 

which allow direct  comparison to  the present TOF experiments.  

F o r  a more  complete discussion of the theoretical  aspects  of 

gas-surface interactions, the reader  is r e fe r r ed  to a summary  

by Tril.l.ing (18) . 
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SECTION VI 

SUMMARY AND CONCLUSIONS 

The nozzle-type molecular beam used for rhe present  

experiments is able t o  provide a suitably intense and near ly  

monoenergetic incident flux f o r  the study of scattering of 

t he rma l  energy par t ic les  f rom solid surfaces .  

of a high intensity beam with d sensit ive time-of-flight detection 

sys t em allows accurate  measurements  of both the spatial  and 

speed distributions of the scat tered par t ic les .  

Combination 

Experimental  measurements  confirm the resul t  of 

cosine scattering for  "dirty" ta rge ts  and lobular scattering 

for  "clean" targets .  

prolonged heating in a vacuum within cer ta in  tempera ture  

"Clean" ta rge ts  have been produced by 

hmit s ;  howvver, present  methods do not yield information as 

to  the prec.ise nature of surface conditions. I t  is probable, 

based on the work of Hinchrq dnd F01ey(~)  and Datz, et al. (19) 

that adsorbed gas  layers  and surface c rys t a l  s t ruc ture  do play 

an  important par t  in gas ~ surface interactions.  

The measured  variations in the position of the Jobe 

maximum for lobular scattering ag ree  qualitatively with the 

resu l t s  of other r e sea rche r s  aqd the predictions of the hard- 

cube model for the effects of t a r g e t  t empera ture ,  angle of 

47 
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incidence, and incident gas molecular weight. 

In addition t o  confirming previous resu l t s ,  the present 

method has provided information about the speeds of the 

scat tered par t ic les  and indicates the following t rends:  

(1) The speed distributions do not in general  correspond 

to  Maxwellian effusion and show a strong dependence of t he rma l  

accommodation on angle of reflection. 

(2) The thermal  spread of the reflected distributions i s  

always smaller  than that for Maxwellian effusion with full thermal  

accommodation and always much grea te r  than that for the incident 

beam. 

(3) The thermal  spread decreases  a s  the angle of incidence 

o r  reflection is increased. 

It has  been shown that the measured  time-of-flight 

distributions may be fitted by anaJytic expressions 01 the fo rm 

)'] At-nexp[-B2( - - -  

the distribution. 

indicate that the degree of f i t  and the magnitude of the deduced 

moments  a r e  relatively independent of the exponent n. 

moments- mean speed and mean energy- obtained in this manner  

a r e  within a few percent of those obtained by numerical integration. 

Simple theories  based on classical  mechanics give a 

for the purpose of obtaining moments  of 

The resul ts  of an analysis of this  fitting procedure 

1 1  

to 

The 

fairly accurate description of the spatial  distribution of scat tered 

particles;  however, they a r e  not sufficient t o  yield accurate  
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predictic>ns for the speed  distributions. 

theore t icd l  models drt- needed t o  explain th i s  speed d is t r i  

bution behavior. 

More complete 

Obviously, the experimental resu l t s  presented he re  

a r e  a l so  f d r  f rom complete. 

of t a rge t  surface s t ruc ture ,  variation of incident par t ic le  

energy and medsurrment  of the f u l l  r e f le r ted  spec t rum (out 

of incident b r<+m-  surface normal plane) are  a r e a s  for 

immediate extension of these experiments.  

s t ruc tu re  chdriges may  prrhdps account for  the marked  qualitative 

change that occurs  with heating o f  the Target at o r  above about 

1 0 0 0 ° K .  

Increased knowledge and control 

Targe t  surface 
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APPENDIX 

CURVE FITTING VS. NUMERICAL INTEGRATION 

A. 1 DERIVATION O F  MOMENTS FROM FITTED CURVE 

It has  been shown by Hagena and Henkes ('O) for n = 3 ,  

generalized here  for a rb i t ra ry  n, that a TOF distribution of 

the form 

may  be fitted to  a given experimental curve by the following 

procedure.  Using t.he relations Sd(tl) = Sd(t.t) = 2 1 Sd(t,) yields 

and 

where a = t /tl o r  t,/tz and m 

n h(a) = 1 - g(a) 

g(a) = (a - 1)2/[1n 2 + n(ln a - a +- I ) ] ,  

55 
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Combining (A. 2)  and (A. 3 )  and letting S = p L/to, 

Sz h2(a)/g(a). (A. 6 )  

Now, S(tm/tl) and S(tm/ts) m a y  be combined t o  give S(tz/t1). 

Then fo r  given experimental values of t z / t 1  and t l  o r  t z ,  the  

values f o r  S and t necessary  t o  f i t  (A. 1 )  at t l  and t2  can 

be found. The constant A is determined by requiring that  S (t ) 

f r o m  (A. 1 )  equals S (t ) f rom the experimental  curve. 

m 

d m  

d m  

To find the moments  of the fitted curve,  it i s  convenient 

t o  t ransform (A. 1 )  into velocity space and express  it in t e r m s  

of a speed distribution function. This yields 

n- 1 dI/dv A'v ~ x P [ - ~ ' ( v  - v ~ ) ~ ]  . 

The mean speed is then given by 

I 

v =  

dI a3 

I V X d V  
0 

dI 00 

I &v 
0 

and the mean square speed is 

7 

00 

$ ? g d v  
0 

- dv dv 0 

(A. 9) 
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Expressions for P v  and P 2 7  have been evaluated f rom (A. 8) and 

(A. 9) for n=3, 4 and 5 and a r e  given below. 

II 
I 
I 

n = 4: 

n = 5: 

(A. 10) 

1 5  -s2 vriT 3 -( .-s + s3)e t F (  4 t 3s' t s4)(i t erf S) 
(A. 12) - 2 2  

p v  = 

(A. 13)  

I 

P =S' 

9 1 -S2 h(  15 
2 4  ( 1  t 4s' t Zs4)e t - - s t 5s3 t s~)(I t erf S) 

- --- - -- 
1 5  -s2 4% 3 -( -S t 9 ) ) e  2 2  2 t-( 2 + 3s' t s4)( 1 t erf S) 

(A. 15) 
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For  convenience in obtaining the des i red  moments  for  given 

values of t z / t 1  and t l  o r  t z ,  the normalized quantities 5 / L  

and Pt2 /L2, which are functions only of tr/t1, a r e  given in 

F igure  A. 1. 

m 

m 

A. 2 APPLICATION TO SAMPLE SET O F  DATA 

- 
Values for and 3 have been evaluated using the method 

of curve fitting f rom Section A. 1 and by numerical  integration using 

the relations (3. 3) and (3. 4) f rom Section 111 for s eve ra l  typical 

T O F  distributions. 

scat tered f rom a hot ta rge t  a r e  shown in F igure  A. 2. 

S (t) has been normalized with respect  to  Sd(tm) and the t ime-of- 

flights to  t*. 

A sample se t  of TOF distributions for  nitrogen 

The signal 

d 

A comparison of the fitted curve with an  experimental  

curve  for 0 

represent  Equation (A. 1) for  n = 3 and n = 5 respectively. 

that both values of n give reasonably good fits over most  of the TOF 

= 60" is given in Figure A. 3. The solid and dashed lines r 

It is seen 

range with the n = 5 curve being slightly better in the  range t l  < t < t z .  - 
Moments and 3 have been calculated for  this  sample se t  

of T O F  distributions by numerical  integration as well as f rom 

curves fitted at t l  and tz .  

F igure  A. 4 as functions of 8 r' 

with reepect t o  vs and I? t o  gS where Ts = 3 6 / 4 p s  and 

The derived moments  are presented in 

The quantity v' hae been normalized - - 

L 
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- 
2 = L / p ;  are  the mean speed and mean square  speed respectively 

corresponding to  fully accommodated thermal  effusion. 

obtained f rom fitting a r e  less  than those f rom numerical integration. 

This would be expected due to the higher degree  of symmetry of the 

measured  TOF distributions. However, the moments  a r e  relatively 

insensitive t o  the exponent n for  these data, with n = 5 only slightly 

better.  (At 8 = 0 ”  the value of tz/tl was too la rge  to allow use  

of the given functional fo rm with n = 5.  ) All values f rom fitted 

curves agree  t o  within about 5% of those f rom numerical integration. 

These resul ts  show that the curve- f i t  method may be used to  obtain 

reasonable approximations of mean  momentum and energy of 

reflected particles.  

S 

The values 

r 

A. 3 EFFECT OF RESOLUTION 

The erroT, due t o  insufficient resolution of the T O F  recordings,  

in the deduction of these two moments  can be estimated using the 

c:urve-fit method and the correction to  the half-width At given by 

Hagena, - et al. (4) Since the proper method for  applying the correction 

At - Ato to  the measured half-width for  insufficient resolution is 

subject to  question, the following two methods will be compared: 

(1) t10 = t l  t (At - At,), t z o  = t z  and 

( 2 )  t l o  ti, t z o  = tz  - (At .- Ato),  
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where quantities with subscript  0 r e fe r  t o  conditions f o r  R - 00 
and those without subscript  0 r e f e r  t o  measu red  quantities at 

resolution R. 

correction (i. e., t l o  = t l  t - (At - Ato), t 2 0  = t 2  - 2 (At - Ato)) 

should lie between these two methods. Therefore ,  for  given 

The resu l t s  for a symmetr ica l  application of the 

1 1 
2 

measured values of t l  and t 2  and the resolutiQn R, the ideal 

values tlo and t 2 0  may  be found, since At - Ato is a function of 

R .  The corrected moments  may then be evaluated using the 

curve-fi t  method forthe new rat io  t z o / t r o .  However, due to  the 

questionability of using either method (1) or  (2) for correct ing 

t l  and tz ,  the method may  be used only to  provide upper and 

lower l imits for  the ideal moments. 

Using the values of t! and t 2  measured  for  the TOF curve 

f rom Figure A. 2 for 8 = 6 0 ”  and the method just  outlined, ideal 

values for the moments  c0 and go have been calculated assuming 

different values of R correspond to  t l  and tz.  

presented in Figure A. 5. 

respect  to their  uncorrected values (those assuming R - 00). 
The lower l imit  represents  method (1) and the upper limit method 

(2) for applying the correction. 

used for  most of the present experiments (4 < R < 5), the quantities 

It should be 

I 

r 

These curves a r e  

Both quantities a r e  normalized with 

It is seen that in the range of R 

I 

and ? would not be in e r r o r  by m o r e  than about 370. 

noted that these resul ts  are mere ly  an est imate  of the e r r o r  limits 
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and that an exact analysis  would requi re  inversion of the  type 

of integral  given by Hagena, e t  al. (4) t o  find the t r u e  TOF 

distribution. 

I 
I 
I 
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